Physicochemical Problems of Mineral Processing, 38 (2004) 147-155 Fizykochemiczne Problemy Mineralurgii, 38 (2004) 147-155

Andrzej HEIM, Tomasz P. OLEJNIK, AGNIESZKA PAWLAK*

THE EFFECT OF THE NUMBER OF CONTACT POINTS BETWEEN GRINDING ELEMENTS ON THE RATE OF GRINDING IN BALL MILLS

Received April 14, 2004; reviewed; accepted June 15, 2004

Results of studies aiming at the determination of the effect of the number of contact points of grinding media on the rate of grinding in ball mills are discussed in the paper. Studies covered batch mills operating in industrial conditions. Wet grinding in a water solution with the addition of antiemulsifiers was carried out for typical raw materials applicable in industrial production of ceramic tiles. The process of grinding media. In the tested mills the rate of grinding of particular size groups was specified. The change of ground material particle size distribution in time was analysed, and the effect of ball size, frequency of drum revolutions and the number of grinding media on the process rate was reported. This rate is variable during grinding and the effect of the above mentioned factors is different in consecutive periods of the process.

Key words: ball mill, point of contacts

INTRODUCTION

In ceramic industry, advantage is most often taken of grinding equipment whose operating principles are based on the use of free energy of grinding media. The simplest design solution are ball mills with steel or corundum grinding media. Grinding of material particles in these mills proceeds mainly between grinding elements and to a lesser extent between grinding media and the inner drum surface [Drzymała 1992, Mattan 1971]. Particles of the ground material which are between the surfaces of adjacent balls moving against each other (this motion may result from both translational motion and rotations of the balls) will be mainly abraded and sheared with possible crushing [Lynch 1974, Lowrison 1974]. In the cataract motion of balls

^{*} Technical University of Lodz, Faculty of Process and Environmental Engineering,

⁹⁰⁻⁹²⁴ Lodz, Stefanowskiego 12/16, Poland, olejnik@p.lodz.pl

(very desirable in ball mills), the striking mechanism of falling balls will be involved additionally [Shipway, Hutchings 1993]. Moreover, the particular mechanisms of grinding are affected by the size of balls and their number. It is obvious that at the same volume of the bed of balls (the same degree of drum filling with balls) the bigger are the balls the smaller is their number. Bigger balls mean a bigger mass of a single ball and higher forces of interactions. A related smaller number of balls means a fewer points of contact, hence a decrease of mini-regions in which in a given moment there can be loads breaking the particles of material being ground. Selection of ball diameters depends on the strength of material being ground and the diameter of raw material particles. In general, for bigger particles, which require bigger forces to be destroyed, bigger balls should be used, while in the case of smaller particles (of weaker materials) better results are obtained when the number of the points of ball contact increases, hence when this number grows at the cost of diameter. Results of grinding in three industrial ball mills operating in the plants that manufacture ceramic tiles were analysed from this point of view.

Simple construction of the mill does not correspond with grinding efficiency. Low efficiency of the process makes technologists search for such ball composition in which mean particle diameter decreases most quickly. This will enable the mill operation time to be more economical.

PROCESS AND EQUIPMENT PARAMETERS OF GRINDING

Changes of particle size distribution of ground material in time were investigated in three industrial mills. Mills A, B and C, were characterised by similar size and kinematic parameters (Table 1). The process of wet grinding was carried out in a water suspension with the addition of anti-emulsifiers. The feed consisted of a mixture of minerals, mainly feldspar and clay. Tables 2 to 4 show the compositions of feed ground in the tested mills.

Industrial mills	А	В	С
Inner diameter, [m]	3	2.5	3.15
Total volume, [m ³]	34	38	38
Frequency of rotations, n[min ⁻¹]	13	12.65	13
Critical frequency, n _{cr} [min ⁻¹]	24.43	26.76	23.84
n/n _{cr}	0.53	0.47	0.54
Number of grinding balls, [thousand]	620	400	400

Table 1. Main parameters of industrial mills

Slight differences in feed composition for the tested mills followed from different technologies of production. This was related to the application of ground product in manufacturing of ceramic materials that would meet special requirements. The ground product from each of the three mills was used in the production of two types of ceramics. Wall tiles are burnt from a material called monoporosis (mill A, B) and silica (mill C). In the production of floor tiles quarry tiles are used (mills A, B and C).

	Monoporosis	Quarry tiles
Solid components, [kg] - including feldspar, [kg] - clay, [kg] - quartz, [kg] - carbonates, [kg]	18 000 5 220 7 740 2 880 2 160	18 000 9 540 7 020 1 440
Liquid components, [kg] - including water, [kg] - sodium tripolyphosphate, [kg] - water glass, [kg]	1 095 1 000 15 80	1 064 1 000 24 40

Table 2. Feed composition for silica quarry tiles in mill A.

Table 3. Feed composition for monoporosis and quarry tiles for mill B.

	Monoporosis	Quarry tiles
Solid components, [kg]	21 300	22 000
- including feldspar, [kg]	3 834	11 660
- clay, [%]	11 502	7 700
- dolomite, [%]	1 704	1 980
- calcium carbonate, [%]	1 704	-
- scrap metal, [%]	-	660
Liquid components, [kg]	2 100	2 600
- including water, [kg]	2 051	2 5 5 0
- sodium tripolyphosphate, [kg]	49	50

Table 4. Feed composition for silica and quarry tiles in mill C.

	Silica	Quarry tiles
Solid components, [kg]	20 000	20 000
- including feldspar, [kg]	6 000	10 000
- clay, [kg]	14 000	10 000
Liquid components, [kg]	1 500	1 500
- including water, [kg]	1 422	1422
- flumix, [kg]	20	20
- water glass, [kg]	68	68

Filling of mills with grinding media, in all three mills equal to ca. 45% batch-wise, was composed of corundum balls of different sizes. Particular ball size fractions in the tested mills are presented in Table 5.

Mill	А	A B	
Ball diameter, [mm]	Mass of balls, [kg]		
19,05	1700	-	925
22,23	2750	-	1625
25	-	4000	-
25,4	4150	-	2500
30	-	8000	-
31,75	8000	-	5050
38,1	1800	-	1400
40	-	8000	-
44,45	3050	-	2300
45	-	6500	-
50,8	4550	-	3450
63,5	-	-	5750
Altogether	26000	26500	23000

Table 5. Composition of balls and their sizes

The grinding was a batch process. After feeding the mill with raw material, in determined intervals (every 60 min) samples were taken for analysis of particle size distribution. The analyses were made using a FRITSCH laser particle size analyser ANALYSETTE 22. Table 6 gives examples of the results of particle size analysis for quarry tiles in mill A.

On the basis particle size analysis the rate of grinding of particular size fractions was calculated. In the calculations, equation (1) proposed by Gardner and Austin was used in the differential form for discrete values of fractions, under the assumption of an ideal mixing of the ground material.

$$\frac{dw_i(t)}{dt} = -S_i w_i(t) + \sum_{j=1,i>1}^{i-1} S_j b_{i,j} \cdot w_j(t)$$
(1)

Rate coefficients S_i in equation (1) for grinding of quarry tiles in mills A, B and C are given in Table 7.

				(Grinding	time, [mir	1]		
Si	ize fraction i, [µm]	60	120	180	240	300	360	420	480
		Size fraction w _i , [%]							
1	0,21÷0,28	0,73	0,69	0,67	0,64	0,64	0,65	0,66	0,68
2	0,28÷0,36	0,95	0,92	0,89	0,86	0,86	0,88	0,91	0,92
3	0,36÷0,47	1,33	1,31	1,28	1,25	1,25	1,28	1,33	1,35
4	0,47÷0,62	1,91	1,90	1,87	1,84	1,85	1,9	1,96	2
5	0,62÷0,8	2,59	2,61	2,56	2,55	2,56	2,62	2,72	2,78
6	0,8÷1,05	3,18	3,22	3,16	3,16	3,18	3,26	3,39	3,47
7	1,05÷1,37	3,66	3,72	3,66	3,67	3,70	3,79	3,94	4,04
8	1,37÷1,78	3,97	4,04	3,98	4	4,04	4,14	4,31	4,42
9	1,78÷2,32	4,13	4,21	4,15	4,18	4,24	4,33	4,52	4,63
10	2,32÷3,03	4,22	4,31	4,26	4,31	4,36	4,46	4,66	4,78
11	3,03÷3,95	4,37	4,50	4,46	4,54	4,58	4,68	4,91	5,04
12	3,95÷5,16	7,73	4,96	4,92	5,03	5,07	5,2	5,45	5,62
13	5,16÷6,73	5,25	5,64	5,60	5,75	5,83	6	6,31	6,56
14	6,73÷8,78	5,5	6,09	6,08	6,24	6,46	6,69	7,07	7,42
15	8,78÷11,45	5,16	5,93	5,97	6,12	6,60	6,86	7,33	7,80
16	11,45÷19,94	4,54	5,48	5,60	5,74	6,50	6,77	7,34	7,92
17	14,94÷19,48	4,16	5,29	5,54	5,72	6,57	6,88	7,49	8,13
18	19,48÷25,42	4,15	5,46	5,98	6,33	6,81	7,22	7,60	8,01
19	25,42÷33,16	4,37	5,87	6,81	7,49	7,07	7,55	7,32	7,02
20	33,16÷43,25	4,71	6,53	7,91	8,91	7,51	7,87	6,83	5,48
21	43,25÷56,42	3,1	4,65	5,51	5,24	4,53	3,78	2,57	1,21
22	56,42÷73,60	3,44	4,35	4,78	3,60	3,04	1,68	0,68	0,13
23	73,60÷96,01	5,33	3,95	3,03	1,85	1,49	0,62	0,11	0,01
24	96,01÷125,24	6,2	2,56	0,69	0,37	0,42	0,16	0,01	0
25	125,24÷163,38	4,8	0,98	0,06	0,03	0,09	0,03	0	0
26	163,38÷213,12	1,98	0,15	0	0	0,02	0,01	0	0
27	213,12÷278,01	0,52	0,01	0	0	0,01	0,03	0,01	0
28	278,01÷362,67	0,11	0	0	0	0,04	0,03	0,1	0
29	362,67÷473,09	0,06	0,01	0	0	0,06	0,04	0,1	0
30	473,09÷617,14	0,15	0,06	0	0,02	0,03	0,03	0	0
31	617,14÷791,42	0,12	0,02	0	0	0,06	0,04	0,01	0

Table 6. Particle size composition of quarry tiles for mill A

Mill A		Mil	l B	Mill C		
di	S _{iA}	di	S_{iB}	di	S _{iC}	
617,14÷791,42	0,000713	-	-	-	-	
473,09÷617,14	0,000859	-	-	473,09÷617,14	0,0165	
362,67÷473,09	0,00107	-	-	362,67÷473,09	0,0313	
278,01÷362,67	0,00187	278,01÷362,67	0,00709	278,01÷362,67	0,0481	
213,12÷278,01	0,00219	213,12÷278,01	0,0167	213,12÷278,01	0,0464	
163,38÷213,12	0,00194	163,38÷213,12	0,0212	163,38÷213,12	0,0353	
125,24÷163,38	0,0016	125,24÷163,38	0,0238	125,24÷163,38	0,0264	
96,01÷125,24	0,00121	96,01÷125,24	0,0242	96,01÷125,24	0,0178	
73,60÷96,01	0,000703	73,60÷96,01	0,0198	73,60÷96,01	0,0119	
56,42÷73,60	0,000428	56,42÷73,60	0,0144	56,42÷73,60	0,00997	
43,25÷56,42	0,000266	43,25÷56,42	0,0127	43,25÷56,42	0,00694	
33,16÷43,25	0,000101	33,16÷43,25	0,0041	33,16÷43,25	0,00262	
25,42÷33,16	7,53E-03	25,42÷33,16	0,002	25,42÷33,16	0,00187	
19,48÷25,42	4,48E-03	19,48÷25,42	0,0015	19,48÷25,42	0,00134	
11,45÷19,94	2,16E-03	11,45÷19,94	0,00123	11,45÷19,94	0,00107	
8,78÷11,45	1,09E-04	8,78÷11,45	0,00105	8,78÷11,45	0,000835	
6,73÷8,78	-6,06E-04	6,73÷8,78	0,000982	6,73÷8,78	0,000649	
5,16÷6,73	6,75E-04	5,16÷6,73	0,00088	5,16÷6,73	0,000525	
3,95÷5,16	2,00E-04	3,95÷5,16	0,00068	3,95÷5,16	0,000475	
3,03÷3,95	1,60E-04	3,03÷3,95	0,000513	3,03÷3,95	0,000448	
2,32÷3,03	-2,14E-04	2,32÷3,03	0,000419	2,32÷3,03	0,000346	
1,78÷2,32	-2,67E-04	1,78÷2,32	0,000384	1,78÷2,32	0,000198	
1,37÷1,78	-5,08E-04	1,37÷1,78	0,000305	1,37÷1,78	7,41E-05	
1,05÷1,37	-7,01E-04	1,05÷1,37	0,000236	1,05÷1,37	-0,00011	
0,8÷1,05	-8,38E-04	0,8÷1,05	0,000134	0,8÷1,05	-0,00025	
0,62÷0,8	-8,97E-04	0,62÷0,8	8,00E-04	0,62÷0,8	-0,00044	
0,47÷0,62	-8,74E-04	0,47÷0,62	5,80E-05	0,47÷0,62	-0,0005	
0,36÷0,47	-6,61E-04	0,36÷0,47	0,000621	0,36÷0,47	-0,00059	
0,28÷0,36	-1,84E-05	0,28÷0,36	0,000199	0,28÷0,36	-0,00068	
0,21÷0,28	0	0,21÷0,28	0,00144	0,21÷0,28	-0,00134	

Table 7. Rate coefficients S_i for grinding of quarry tiles in mills A, B and C

Fig. 1. Change of particle size composition of material ground in mill A in time

Knowing the particle size composition, mean particle size was calculated from the formula

$$\mathbf{d}_{\mathrm{sr}} = \sum_{i=1}^{n} \mathbf{d}_{\mathrm{sr}\,i} \cdot \mathbf{x}_{i} \tag{2}$$

This enabled a graphical representation (Fig. 2) of grinding kinetics in the form of a relation between mean particle size and grinding time: $d_{sr} = f(t)$.

Fig. 2. Change of mean particle size dsr during grinding

RESULTS AND DISCUSSION

Diagrams in Fig. 2 show clearly that in the first period of grinding, when raw material particles are big, the process of grinding is the fastest in mill C. Already, after 60 min of grinding, the mean size of particles ground in this mill is about 32 μ m. Decay rates of size fractions between 699 and 109 μ m are the biggest for mill C (Table 7) reaching about 0.04 min⁻¹. A worse result was achieved in mill A, because after the same time $d_{sr} = ~41 \mu m$. Rate S_{iA} for so big size fractions (362,67 to 73.6 μ m) in mill B is almost twice as small as rate S_{iC} for the same fractions in mill C. For the mentioned size range the mean value of S_{iB} for mill B is around 0.02 min⁻¹. To obtain a mean size of particles of ground material $d_{sr} = 45 \ \mu m$, the process should be carried out in mill B for 300 min. These results can be explained by two factors. The first one is the size of grinding balls. The biggest balls in mill B had the diameter 45 mm, while in mill A the balls had the diameter 50.8 mm, and in mill C even 63.5 mm. Another parameter is the relative frequency of drum rotations which in mill B was much lower than in the two other mills (Table 1). This made that the energy of grinding balls in mill C was the highest (the highest relative rate and the biggest balls), while in mill B this energy was definitely the lowest. For these reasons, with big particles in the first period of grinding the process rates are so differentiated in particular mills. In the second period of grinding, shown in Fig. 2, which starts when the mean particle size of ground material reaches dozen micrometers, the process rate is determined not by the size of balls but their number to which the number of points of contact between balls is proportional. As was reported above, the probability that a particle of ground material can appear in the region where it is destroyed, thus in the region near the contact point of two balls, is proportional to the number of these contact points. In mills B and C the number of balls is the same and a time-dependent change of the mean particle size proceeds in a similar way. The values of S_{iB} and S_{iC} for the size fraction below 5.84 µm are similar (Table 7) and are equal to around 0.0004 min⁻¹. In mill A filled with a bigger number of balls (a bigger number of contact points) the rate of decreasing the mean particle size is bigger in the second period of grinding when only small particles occur.

CONCLUSIONS

The following conclusions can be drawn from the results discussed above:

- 1. In the first period of grinding in ball mills, when raw material particles are relatively big, the process depends on ball size and rotational speed of the mill, which determines the forces with which balls act on each other.
- 2. In the second period of grinding, when particle size of the ground material is much smaller, the effect of the number of balls and consequently the number of the points of contact of grinding elements between which material particles are comminuted, becomes more evident.

LIST OF SYMBOLS

- d_{śr} mean (arithmetic) particle size in size interval i
- x_i mass fraction of particles from the size interval i
- $w_i(t)$, $w_i(t)$ weight fraction of particles from interval i or j after grinding time t,
- S_i , S_j specific rate of grinding of particles from interval *i* or *j* called also the distribution parameter,
- $b_{i,j}$ distribution function defined as this part of ground material from size fraction *j*, which passed to size interval *i*.

REFERENCES

DRZYMAŁA Z. i inni, 1992, Badania i podstawy konstrukcji młynów specjalnych. PWN. Warszawa. LOWRISON G. C., 1974, Crushing and grinding. Butterworth, London. LYNCH A.J., 1974, Mineral crushing and grinding circuits. Amsterdam, Oxford, New York. MATTAN J., 1971, How to step up ball mill efficiency. Rock Products, Nr 5. SHIPWAY P. H., HUTCHINGS I. M., 1993, Attrition of brittle spheres by fracture under compression

and impact loading. Powder Tech. 76, 23-30.

SHIPWAY P. H., HUTCHINGS I. M., 1993, Fracture of brittle spheres by fracture under compression and impact loading. I. Elastic stress distribution. Phil. Magaz. A, 67, 1389-1404.

ACKNOWLEDGEMENTS

This study was carried out within research project no. 3T0C 005 23 financed by the State Committee for Scientific Research in the years 2002-2005.

Heim A., Olejnik T.P., A. Pawlak A., Wpływ liczby punktów kontaktu mielników na szybkość mielenia w młynach kulowych, Physicochemical Problems of Mineral Processing, 38, (2004) 147-155 (w jęz. ang.).

W pracy przedstawiono wyniki badań, których celem było określenie wpływu liczby punktów kontaktu mielników na szybkość mielenia w młynach kulowych. Badania prowadzono dla trzech młynów o działaniu okresowym pracujących w warunkach przemysłowych. Młyny posiadały zbliżone wymiary geometryczne. Przemiał prowadzono na mokro (w zawiesinie wodnej z dodatkiem antyemulgatorów) dla typowych surowców, mających zastosowanie w przemysłowej produkcji płytek ceramicznych, którymi były mieszaniny skalenia oraz iłów w odpowiednich udziałach masowych. Zbadano przebieg procesu mielenia dla trzech przemysłowych młynów kulowych, różniących się liczbą i wielkościami mielników korundowych. Dla każdego z przemiałów, co 60 minut pobierano próbki do analizy granulometrycznej. Określono szybkość rozdrabniania poszczególnych klas rozmiarowych w oparciu o równanie Gardnera Austina. Analizowano zmianę w czasie składu granulometrycznego mielonego materiału, stwierdzając wpływ na szybkość procesu wielkości kul, częstości obrotowej bębna oraz liczby mielników. Szybkość ta jest zmienna w czasie mielenia, a wpływ w/w czynników jest różny w poszczególnych okresach procesu.

Praca wykonana w ramach projektu 3T0C 005 23, finansowanego przez Komitet Badań Naukowych w latach 2002-2005.